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Abstract

Filter lists are used by various users, tools, and researchers to iden-
tify tracking technologies on the Web. These lists are created and
maintained by dedicated communities. Aside from popular blocking
lists (e.g., EasyList), the communities create region-specific block-
lists that account for trackers and ads that are only common in
these regions. The lists aim to keep the size of a general blocklist
minimal while protecting users against region-specific trackers.

In this paper, we perform a large-scale Web measurement study
to understand how different region-specific filter lists (e.g., a block-
list specifically designed for French users) protect users when visit-
ing websites. We define three privacy scenarios to understand when
and how users benefit from these regional lists and what effect
they have in practice. The results show that although the lists differ
significantly, the number of rules they contain is unrelated to the
number of blocked requests. We find that the lists’ overall efficacy
varies notably. Filter lists also do not meet the expectation that
they increase user protection in the regions for which they were
designed. Finally, we show that the majority of the rules on the
lists were not used in our experiment and that only a fraction of
the rules would provide comparable protection for users.
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1 Introduction

Ads are central to today’s Web ecosystem, primarily serving as a
revenue source for online businesses, content creators, services,
and other entities. For many websites, especially those that offer
free content, advertising is the primary means of monetization.
This model leads to considerable security and privacy problems.
One of the most significant issues is the pervasive tracking that
underpins targeted advertising: To maximize the effectiveness of
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advertising, advertisers and third-party networks often use tracking
technologies such as cookies [25, 28, 54, 55] and fingerprinting [22,
33, 40].

Such security and privacy concerns lead to use of ad blocking
and tracking blocking techniques. Such blockers use filter lists to
identify and block requests to known ad servers and remove website
advertising elements based on predefined rules. A filter list is a col-
lection of rules and patterns designed to detect and block unwanted
website content, such as advertising, tracking scripts, and other
intrusive elements. When a user visits a website, the ad blocker
compares the page’s content with the filter list and dynamically
blocks elements that match the specified patterns. Popular lists
such as EasyList [19] are maintained by a community of volunteers
who continually update them to keep up with evolving advertising
techniques and new tracking methods. Ad blocker users can sub-
scribe to these lists to ensure their browsing experience remains
free from unwanted interruptions and privacy intrusions. Regional
filter lists are specialized rules tailored to block ads and tracking
scripts specific to certain geographic regions, languages, or cultural
norms [20]. These lists address the unique advertising practices,
ad networks, and tracking mechanisms prevalent worldwide that
global filter lists may not comprehensively cover. Popular blockers
like AdBlock [2] or uBlock [44] recommend using regional filter
lists if you browse non-English websites. For instance, a regional fil-
ter list for Japan would contain rules for blocking advertising from
Japanese advertising networks and content in Japan. Ad-blocking
software can potentially provide more effective and localized ad
blocking by including regional filter lists, ensuring that users in
different regions enjoy a cleaner and more relevant browsing ex-
perience. These lists are often maintained by local communities or
experts who know the regional advertising landscape.

In this paper, we analyze the effects associated with regional
filter lists in different scenarios. To this end, we conduct a large-
scale measurement study to understand how these lists affect users’
browsing experience and privacy. More specifically, we analyze nine
country-specific filter lists provided by the EasyList community and
study three privacy scenarios to understand when and how users
benefit from regional lists. Using our measurement framework, we
visited over 1.8 million pages, collected over 207 million HTTP
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requests, and stored over 579 GB of data for analysis. We found that
most of the used region-specific filter lists only block a minimal
number of requests and that lists designed for other regions may
outperform specialized lists even in a local setting. Furthermore,
we find that lists do not meet the expectation that they perform
well when users visit websites that belong to the region the list
was designed for, questioning the need for localized blocklists. Our
results show that most rules (93%) in the filter lists are not used.
In summary, we make the following contributions:
• Large-scale measurement to understand the impact of lo-

calized filter lists: We collect regional filter lists (𝑛 = 9) that
intersect with measurement locations worldwide. We provide a
real-world measurement framework that allows researchers to
analyze the impact of regional filter lists on security and privacy.

• Impact of Regional Filter Lists on Privacy:Our findings show
that regional filter lists do not significantly enhance privacy in
targeted regions and are often more effective in other regions.
Combined with a standard filter list like EasyList, they provide
benefits, suggesting that regional lists alone are insufficient.

• Effectiveness of Filter List Rules: Our analysis reveals that
only 7% of the rules in filter lists are effective in identifying
tracking requests, highlighting the potential for significant opti-
mization. To aid this, we propose a master list for maintainers.

2 Background & Terminology

First, we want to introduce important terminology used throughout
the paper and describe the fundamentals of filter lists.
Terminology. We use the term site to refer to the registrable seg-
ment of a specified domain, commonly known as “extended/effective
Top Level Domain plus one” (eTLD+1) [8, 15, 37, 53]. The top-level
domain (TLD) is the portion of a domain name after the last dot
(e.g., example.edu, the TLD is edu). However, this structure does
not always apply because many registrars allow organizations to
register domains directly under the TLD (e.g., example.ac.uk). The
Public Suffix List [1] is a compilation of all suffixes under which
organizations can directly register domain names, also known as ex-
tended/effective TLDs (eTLDs). The term eTLD+1 refers to an eTLD
combined with the next part of the domain name. For instance, in
the URL https://www.example.edu/, the eTLD+1 is example.edu (the
www. part is not part of the eTLD+1), while in https://foobar.co.uk/,
the eTLD+1 is foobar.co.uk. The term page (or webpage) refers to
a distinct URL or, more precisely, the document (e.g., HTML or
JavaScript) located at that URL.
Filter Lists. Filter lists are a standard tool to block the loading of
advertisements or trackers on the Web. Over time, different lists
emerged that aim to block various types of content (e.g., region-
specific ads or ads that contain adult content). Tracking-protection
tools (e.g., ad blockers) typically use these lists to identify trackers
or other privacy-invasive objects. These tools are commonly imple-
mented as browser extensions or, in some cases, directly embedded
into the browser. Filter lists are text-based files that contain a set of
rules. Usually, each line in a filter list contains a single rule, and com-
monly used lists often contain tens of thousands of rules [19]. The
syntax of the rules is very similar to standard regular expressions.
These expressions are matched against a given URL and return a
binary result that indicates whether the URL belongs to a tracker.

For example, the rule ||example.comˆ blocks all requests to the
site example.com. The effectiveness of a filter list is based on the
rules contained in the list. Finding and designing these rules is not
straightforward and is mainly done by volunteers. It is possible
that the blocking of requests that match a rule breaks a website
because website content would have been delivered by the blocked
request [49]. Popular lists are EasyList [19], EasyPrivacy [21], and
Fanboy’s Social Blocking List [26]. To improve these tools, users
started to build localized filter lists that contain rules related to spe-
cific locations (e.g., refer to trackers that mainly operate in a specific
country) [20]. In addition to lists that aim to protect users’ privacy,
other lists were created to block specific content on the Web (e.g.,
“nocomments” removes the comment section from websites) [6].

3 Selection and Comparison of Filter Lists

This section describes the privacy challenges using localized filter
lists (Section 3.1), the selection of filter lists for our experiments (Sec-
tion 3.2), and the similarities between localized lists (Section 3.3).

3.1 Privacy Challenges

In this work, we analyze the effect of different localized filter lists
when browsing the Web. To assess their impact on users’ privacy,
we study several privacy challenges that we use throughout this
paper. Our work is based on the following assumptions regarding
the behavior of users and the setup they use:
• Assumption 1: The user uses a privacy-enhancing tool (e.g., an
ad blocker) with a filter list. This assumption is reasonable, as
such tools are widely used by users on the Web [5].

• Assumption 2: The used filter lists are region-specific. This as-
sumption is justified, as the widely used EasyList [19] is primarily
tailored to US users. Furthermore, different filter lists exist that
target diverse user groups [6].

• Assumption 3: The region-specific filter lists extend the gener-
ally used EasyList for our analysis. This assumption also holds,
as the non-standalone lists are intended to be combined with
EasyList. To compare them reasonably, it makes sense to only
look at rules on the region-specific filter lists because they are
eventually combined with EasyList.

Based on these assumptions, we define three scenarios that nega-
tively impact the users’ privacy when using a localized filter list.
Figure 1 provides an overview, and we describe them next:
• Scenario 1: In this scenario, the user visits websites whose visi-
tors are commonly from a specific region (e.g., a user from India
visits sites commonly visited by other Indian users). An example
of this scenario would be a user browsing a local newspaper’s
website. The privacy challenge is that trackers on the page could
be included in a region-specific filter list but not in a general list.

• Scenario 2: In this case, the user is (temporarily) in a different
region (e.g., traveling) and visits websites she would usually visit.
A privacy challenge is that the user gets served region-specific
ads (e.g., for local goods ) not covered by her filter list.

• Scenario 3 (combination of 1 and 2): In this scenario, the user
is temporarily in a different region and visits websites that are
region-specific (e.g., being on vacation looking for local activities).
The privacy issue is that the user might be served ads by both
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Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed
diam nonumy eirmod tempor invidunt ut labore et dolore magna

aliquyam erat, sed diam voluptua. At vero eos et accusam et
justo duo dolores et ea rebum. Stet clita kasd gubergren, no
sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem
ipsum dolor sit amet, consetetur sadipscing elitr, sed diam no
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Figure 1: Scenarios for the usage of localized filter lists. In

scenario 1, a user located in, e.g., Germany uses a filter list

for Germany and visits German URLs. In scenario 2, a user

located in the US uses a German filter list and visits German

URLs. In scenario 3, the user is in the US and uses a filter list

localized for Germany but visits German and US URLs.

trackers based on the current location and trackers targeting a
website’s usual audience.

On the Web, targeted advertising is very common [53], and users
get served personalized ads. It is essential to highlight that while
ads might be user-specific, the included trackers or ad networks
are not. For our work, users might see similar ads independent of
the described scenarios, but the used tracker can differ.

3.2 Selection of Filter Lists

We want to analyze the privacy impact when users use different
region-specific filter lists. Thus, we first collect different filter lists
to assess their differences. For this analysis, we focus on 23 country-
specific filter lists provided by the EasyList community [20]. Like the
“original” list, the community updates these lists regularly, following
a common standard. Some of the provided lists are standalone ex-
tensions of EasyList, meaning that they include most of the general
EasyList rules and additionally include region-specific rules, while
others only include region-specific rules. To allow comparison be-
tween the lists, we use the general EasyList (named baseline in
the following) as the baseline and remove all rules present in the
baseline from the region-specific lists. This approach also accounts
for the fact that some of the analyzed filter lists are meant to be used
as standalone lists (i.e., they include the baseline list), and some are
meant to be used as an extension (i.e., they mainly include rules
not present on the baseline list). Our approach of removing the
rules from the baseline list may not completely reflect how users
will use them, as they will most likely use them in combination
with the baseline (i.e., standard blocklist). However, combining the
baseline with each regional list will impact them equally. All lists
are extended by the same rules, which means they will all block
more trackers, but the ratio of blocked trackers between all lists
will remain similar. Thus, in the remainder of the paper, we will
only consider the revised lists that do not contain the rules from
the baseline. However, to provide a picture of the effect of using
the lists in combination, we provide an overview of the impact of
using the baseline combined with a regional list in Section 4.4.

Before our analysis, we tested if the presented lists were regularly
updated by analyzing the GitHub repositories of the 23 filter lists.
The Romanian filter list did not have a GitHub repository, so we did
not analyze those commits and excluded the list from our analysis.
Thus, in the following, we only analyze 22 lists. To analyze the
repositories, we cloned the repository to a local device and inspected
the commits with the git log method. Using this method, we can
extract the SHA1 hash, date, author, and how many rules have been
added or removed by a single commit. We provide the source code
in the supplementary material of our work (see Appendix A). The
filter lists used in our experiment are updated regularly, as shown
by the number of commits in Figure 2. In the period from April 2023
until April 2024, the repositories of the 23 analyzed lists received
on average 3,860 (min: 15, max: 38,505, SD: 7,922) commits. The
most active filter list regarding the total number of commits is the
standard EasyList (i.e., the baseline), with 38,505 commits during
the period of our study. Compared to the US list, European lists are
less active. For example, the German list has 1,334 commits, and
the Norwegian list has 5,787 commits.

The number of commits does not provide insights into the num-
ber of added, modified, or deleted rules. Thus, to provide deeper
insights into the filter list ecosystem, we analyze the change in
rules by each commit. Figure 2 provides an overview of added and
deleted rules across the measurement period. Figure 15 in Appen-
dix E provides a fine-grained overview of the added and removed
rules for each filter list. Across the analyzed lists, there is a non-
binding standard to label commits. There are three main types to
update a filter list: A for added, D for deleted, and M for modified. If a
commit updates a filter list, it should start with one of those letters
followed by the affected domain. Note that filter lists for Czech and
Slovak, Japan, and Israel do not follow this standard; therefore, they
are not included in Figure 2. It should be noted that a modification
commit is usually a combination of adding and deleting rules. We
filtered the commit message of the analyzed repositories and identi-
fied 223,917 (avg: 11,195, min: 1, max: 103,782, SD: 23,369) commits
that added rules, 1,883 (avg: 269, min: 1 ,max: 1,817, SD: 632) com-
mits resulting in deletion of rules, and 67,060 (avg: 3,725, min: 1,
max: 43,794, SD: 9,947) commits that modified rules on the list. Thus,
it seems that most commits either add rules or change them (69%),
while only a minority of commits (0.4%) remove rules. We could not
identify 30.5% of commits of less usage of the non-binding standard.
If we assess the number of rules added or deleted by the observed
commits, we see a different picture. If we look at the number of
added (avg: 31,072, min: 65, max: 458,690, SD: 54,088), or removed
(avg: 26,771, min: 63, max: 432,462, SD: 50,105) rules in the commits,
we notice that only slightly more rules were added than removed.
However, if we look at the individual lists, we see most rules were
added or removed in the Vietnamese filter list (5,082,891 rules in
9,925 commits). The least active list is the general Anti Adblock
Filter list (4,997 rules in 1,154 commits). Across all localized lists
(excluding the baseline), we see that, on average, 18 people (min: 2,
max: 62, SD: 15), based on their GitHub names, are committing
to the repositories. Regarding the size of the individual commu-
nity, we see the largest community in Scandinavia (62 people with
16,323 commits) and the smallest in Bulgaria (two authors with
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Figure 2: GitHub commits on each list’s repository that added,

modified, or removed rules between 04/2023 and 04/2024.

146 commits). The analysis shows that most localized lists are well-
maintained by an active community that updates them regularly.

3.3 Differences in Localized Filter Lists

We start by analyzing the differences in localized filter lists to
understand their distinct impacts on user privacy.

3.3.1 Comparing Different Filter Lists In this section, we assess
to what extent the localized filter lists differ from each other, and
whether they protect users’ privacy differently. This analysis ex-
amines whether the proposed privacy challenges (see Section 3.1)
exist when a localized filter list is being used. Overall, there are 23
localized EasyLists available [20]. The lists are designed for users
from 29 countries on three continents (i.e., some lists target users
from different countries). We used the General EasyList as a base-
line and removed all rules present on that list from the localized
lists to compare them reasonably. On average, each localized list
has 10,389 rules (min: 382, max: 74,564, SD: 17,230). In total, there
are 198,989 distinct rules in all lists. Only 53 (0.04%) occur in two
lists, and no rule in three or more lists. To better understand the
similarity of the lists, we compared pairwise similarity between
the rules. On average, two list share 1.9 rules (min: 0, max: 122,
SD: 10.7), and the median of shared rules is 0. The most similar lists
(Russia and France) share 122 rules. This suggests that the lists are
sufficiently different to have an impact on users’ privacy.

3.3.2 Understanding Filter List Similarity via Clustering Another
way to understand the differences in the analyzed filter lists is to
try to cluster them based on the rules present in each list. If we
find clusters of filter lists, we can conclude that they are similar
and, therefore, protect a user’s privacy in a similar way. However,
if the filter lists cannot be meaningfully clustered, this is another
indicator that each list protects the users’ privacy differently.

To perform the clustering, we utilize the Jaccard distance [36],
which indicates the dissimilarity (“distance”) between two given
sets as a metric to measure differences between two filter lists. The
metric is defined as follows: 𝐽𝐷 (𝐴, 𝐵) = 1 − |𝐴∩𝐵 |

|𝐴∪𝐵 | . By design, the
index ranges from 0 to 1, where 0 denotes that the sets are equal
and 1 that they have no element in common. Thus, in our case, one

Figure 3: Overlap between the domains blocked by each list.

would mean that two lists have no element in common, and zero
indicates that all rules are equal. Aside from two cases, the distance
between two lists is one (i.e., no elements in common). Therefore,
one can expect that clustering the lists will not be possible.

In our experiment, we use the standardOPTICS [3],DBSCAN [45],
and HDBSCAN [9] clustering algorithms, which are all density-
based, to search for a non-determined number of clusters in a given
dataset. None of the used clustering algorithms could build mean-
ingful clusters. The DBSCAN and HDBSCAN algorithms did not
identify a single cluster and labeled each list to be a “noise point”
(i.e., outlier). In contrast, the OPTICS algorithm found a single clus-
ter that contains all lists. These results show that the analyzed
filter lists differ because they cannot be meaningfully combined
or grouped based on underlying rules. This finding indicates that
country or region-specific rules are not shared across lists.

3.3.3 Differences on Domain Level On the rule level, most lists
differ extensively. However, it might be possible that the rules are
designed to block the same domains but with (slightly) different reg-
ular expressions. To assess this, we utilize the JustDomains tool [38].
JustDomains is a tool that takes a filter list as input and provides a
list of all domains (eTLD+1) that would be blocked by the rules on
the filter list. Thus, the tool allows us to compare if the localized
filter lists aim to block different trackers or if they block similar
trackers but with different rules. We computed the intersection be-
tween two lists created by JustDomains to understand the overlap
in blocked domains. Fig. 3 provides an overview of the similarity
between the lists. The results show nearly no similarity (i.e., over-
laps) between different lists. On average, the overlap in blocked
domains is 0.6% (min: 0%, max: 26.7%, SD: 2.9%) if we exclude self-
comparison. These results are in line with the small overlap in rules,
indicating that each list aims to block a different set of trackers.

Lessons learned. The comparison of rules across the analyzed
lists and the fact that it seems hardly possible to cluster them
indicates that these lists are different. Thus, the lists aim to
block different requests of specific domains for a given region.
This observation shows that users who visit sites and pages not
frequently visited by other users in their region may be more
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susceptible to tracking, as their used lists do not protect them
from common trackers on such pages.

4 Measuring the Impact of Localized Filter Lists

This section describes the measurement framework that we use to
analyze differences in the effectiveness of localized filter lists in the
wild.We provide an overview of our dataset (Section 4.2) and discuss
the impact of localized filter lists on user privacy (Section 4.3).
Finally, we perform a runtime analysis of filter lists of different
sizes (Section 4.6) and test how many rules are effectively used to
block requests in our measurement (Section 4.7).

4.1 Experimental Design

4.1.1 Measurement Vantage Points We must measure user web
traffic from different locations to measure the real-world impact of
region-specific (or localized) filter lists. To select the locations, we
identified intersections between the available instances of different
cloud providers (i.e., Amazon Web Services (AWS), Google Cloud
Platform, and Microsoft Azure) and the identified localized filter
lists for the specific country (see Section 3.2). We identified five
intersections for the Google Cloud Platform, seven for Microsoft
Azure, and nine locations for AWS. For our analysis, we used Ama-
zon Web Services (AWS) to simulate the different user locations
because it offers the most locations for the analyzed filter lists,
which is crucial for our experiment. We decided not to use multiple
cloud providers to avoid biased results (e.g., due to blocking of
specific cloud providers [37, 56]). This step also increases the repro-
ducibility and comparability of our results because the technical
setup is consistent in resources and technical latency when using
only one cloud provider. Table 1 shows the analyzed filter lists and
AWS instances we use in our experiment.

4.1.2 Websites to Analyze Our experiment uses two measurement
profiles that simulate the described scenarios. We selected the sites
to analyze based on the Chrome UX Report (CrUX) [31] of January
2024 (version 202401), as it is the only toplist that provides extensive
coverage of top sites for the analyzed regions. We selected the first
10,000 eTLD+1 sites from each country for our scope. To capture a
representative behavior of each site, we randomly selected 15 pages
from each domain for our analysis [4, 53]. To collect the subpages,
we looked for first-party links on the landing page and used them
for our analysis, a strategy commonly used [14, 16]. If we did not
identify enough links on the landing page, we recursively looked
at the identified subpages. From all identified links, we randomly
sampled 15 for our analysis. We captured these pages before we
performed the measurement to visit the pages with our framework.
We provide a list of the analyzed sites, pages, and retrieved cate-
gories in Appendix A. We use two profiles to simulate the privacy
challenges described in Section 3.1 using the localized lists.
Profile 1:. In this profile, we simulated a user visiting the top pages
of the user’s location (see Scenarios 1 and 3). To implement this,
we ran measurements from different locations and visited the top
10,000 sites (eTLD+1) and pages on these sites for this location.
Profile 2.We also simulated that a user is visiting pages that are
commonly visited by users from different locations (Scenario 2).
For this purpose, we ran the measurements from each location

and visited the top 1,000 sites and respective pages from all other
locations. In total, we visited 8,000 sites in each location in this
profile.

4.1.3 Measurement Framework We built our experimental setup
using the measurement framework by Demir et al. [12, 14]. The
framework consists of one master VM that orchestrates an experi-
ment and manages multiple ‘agent’ VMs that conduct the measure-
ments (one for each profile in a measurement run). Each VM runs
a separate crawler with a distinct configuration. The profiles are
described in Section 4.1.1. Each measurement uses OpenWPM [24]
(v0.27.0), which uses the Firefox browser (Version 123.0), with the
user agent (Mozilla/5.0 (X11; Linux x86_64; rv:123.0) Gecko/20100101
Firefox/123.0) and a screen resolution of 1920x1080 to visit the pages
of interest. We configured OpenWPM to collect all HTTP(s) traffic,
the content of the cookie jar and local storage data, DNS resolu-
tion, JavaScript (JavaScript cookies), and site visits. We performed a
stateful crawl for each visited site, meaning we kept the browser’s
state when visiting all site pages and reset it before analyzing a
new site. Based on the framework, we implemented two different
ways to mimic user interaction: (1) simulating keystrokes and (2)
pseudo-random mouse movements. Regarding the keystroke, we
wait for the page to finish loading (or at most 30 seconds). We simu-
lated three Page Down keystrokes followed by three Tab keystrokes
and, finally, an End keystrokes with minimal periods of delay in
between, ensuring the page is fully scrolled and rendered. We simu-
lated the mouse movements via JavaScript to randomly moved the
cursor over the page. We stored all collected data in a BigQuery [29]
database.

Before measuring, we collected 15 pages from each site that we
included in our analysis, which means that we analyzed up to 16
pages per site (i.e., the landing page and 15 subpages). We config-
ured the used framework to automatically visit each domain and
collect the linked subpages (i.e., first-party links). To collect the
pages, we used AWS EC2 instances located in specific countries
to get the local IP address of each region. For each measurement
profile in each region, we used an AWS EC2-instance (OS: Ubuntu
20.04, RAM: 32 Gib, CPU: 8 (3.0 GHz)/4 (peak of 3.1 GHz) depending
on availability in the specific region) and installed our measurement
framework on it. Each instance is supplied with the sites and pages
to visit and then visited them successfully. During the measurement,
we did not use any filter list-based tool (e.g., a tracking blocker).
After each measurement, we utilized the identified lists (see Sec-
tion 3.2) to flag each request whether the specific list would have
blocked it. To flag if an observed URL would have been blocked
by a given filter list, we utilize the Rust library adblock-rust from
Brave [41]. We slightly adjusted the library to not only return a
boolean value if a URL would have been blocked but also to return
the rule that would have led to the request being blocked. Thus,
for each URL, we recorded if a list would have blocked that URL
and, if so, which rule or rules would have blocked the request to
the URL. As we applied all filtering rules to each profile, we can
compare the lists’ effectiveness based on the same dataset. It must
be noted that this approach assumes there is no dependency be-
tween different HTTP(S) requests, which is not entirely correct.
For example, if a website includes an iframe from a third party
that a block list would have blocked, all follow-up requests that
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AWS Instance Filter List

No. ID Region City Target countries

∑
Rules Δ EasyList Link Stand-alone Version

1 US US East Ohio EasyList (USA)✱ 74,564 —  ✓ 202405080949
2 CN Asia Pacific Hong Kong China 93,561 18,997  ✓ 202405081021
3 JP Asia Pacific Tokyo Japan 5,911 5,633  ✗ 2024/04/26 19:54
4 IN Asia Pacific Mumbai India, Nepal, Bangladesh 83,452 8,888  ✓ 202405081021
5 DE Europe Frankfurt Germany 80,096 5,532  ✓ 202405081021
6 NO Europe Stokcholm Norway, Denmark, Sweden 81,182 6,618  ✓ 202405081021
7 FR Europe Paris France 20,500 20,393  ✗ 202405081021
8 IS Israel Tel Aviv Israel 75,797 1,233  ✓ 202405081021
9 AE Near East AE United Arab Emirates 1,850 1,850  ✗ 202405081021

Table 1: Used filter lists and corresponding AWS instances. ✱ The standard EasyList is our baseline. Δ indicates the number of

rules not present on the baseline list. The target countries represent locations where the filter list is typically used.

load the content of this iFrame would also have been blocked. Our
approach does not account for that. Thus, our approach will re-
port an upper bound of trackers since a URL might also block the
consequently loaded requests if it belongs to a tracker on a block
list. The approach of identifying trackers after the measurement
is common [7, 35, 43, 54]. Furthermore, it would not be feasible
to perform a large-scale measurement for each individual list due
to scalability reasons. We make our setup and the collected data
available (see Appendix A).
Statistical Analysis. Throughout the paper, we use the Kruskal-
Wallis test [39] to evaluate whether disparities exist in the central
tendency (median) of a continuous dependent variable across multi-
ple groups. For all analyses, we maintain a 95% confidence interval
(𝛼 = 0.5) and use the 𝜂2 test to gauge the effect size of a Kruskal-
Wallis test. We define an effect as small if 𝜂2 ≤ 0.06, moderate if
0.06 < 𝜂2 < 0.14, and large if 𝜂2 ≥ 0.14 [10].

4.2 Measurement Dataset Overview

Using our measurement framework, we successfully visited 95%
(min: 7,812, max: 9,421, SD: 680) of the identified sites, on average,
and in total 1,828,493 (min: 90,906, max: 123,143, SD: 10,710) pages
on these sites. On average, we visited 12 (min: 1, max: 16, SD: 6.5)
pages per site. We visited 112,047 distinct sites and 1,024,676 pages.
Figure 4 provides an overview of the occurrence of sites, pages,
and requests in the different profiles. The figure shows the overlap
of sites, pages, and domains across the profiles (e.g., how many
pages were only visited in one profile). 88% of the analyzed unique
domains only appear in one profile, meaning there is only a small
overlap in popular domains across all regions. Furthermore, only
356 sites appear in all profiles. Finally, we found that 21,774 pages
only appear in one profile. This observation shows that not only
are the languages (i.e., domains) of a page unique, but also the sub-
pages of these sites are not shared across regions. The distribution
of requests among the profiles is more diverse, showing a notable
overlap between them. Thus, while each visited page loads some
content specific to the page, there are resources used by multiple
pages and across profiles (e.g., images or trackers). Our observation
suggests that regional filter lists might be needed, as many pages
and sites are only present in specific profiles. Thus, a single filter list
would have to hold several rules that might only be used for pages

Figure 4: Occurrence of sites, pages, and requests across all

profiles (logarithmic scale). The x-axis denotes in how many

profiles a site, page, or request was observed.

that are only relevant to a fraction of users. In our experiment, we
observed over 207 million HTTP requests and stored over 579 GB
of data. Table 2 provides an overview of the measured data.
Identified Known Trackers. To understand the impact of the an-
alyzed filter lists, we first compare the number of blocked requests
by each list. Table 2 shows the number of identified trackers in each
measurement run. Across all profiles, the baseline list (i.e., standard
EasyList) identified 47,817,273 (23%) trackers from 6,967 distinct
eTLD+1s across all measurement runs. We grouped the trackers
by eTLD+1 to provide an indication of (1) how many different do-
mains/organizations are responsible for the tracking requests and
(2) to use the comparision eTLD+1 for further analysis. Regarding
the localized lists, it is interesting that five of the lists that are de-
signed for a specific location worked better in other locations (in
terms of blocked requests). Especially the lists from the US (stan-
dard EasyList) and Japan performed well across all measurement
profiles. These lists do not hold most rules (see Table 1). We found
no statistically significant effect between the number of rules in
a list and the number of blocked requests. On average, the lists
blocked 79.78% less unique requests than the US list (avg: 79.78%,
min: 11.99%, max: 99.5%, SD: 30.74%). Overall, 71.28% of the requests
that would have been blocked by the standard EasyList would have
also been blocked by at least one localized list, meaning that differ-
ent rules lead to blocking a URL. There are severe differences in the
effectiveness. For example, the German list, which contains 5,532
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Analyzed Cookies Identified Trackers

No. Profile Sites Subpages Unkno. Necess. Functio. Perfor. Ad/Targ. AE CN DE FR IS IN JP NO US

0 AE.AE 9,009 96,877 3,758,577 314,762 166,367 854,944 1,231,417 70,792 72,712 1,591,599 322,609 11,365 159,048 2,271,223 113,518 2,916,015
1 AE.INT 7,862 94,070 3,504,266 284,870 163,365 717,760 1,169,901 69,509 110,495 1,602,255 348,995 13,275 125,439 2,869,242 131,951 3,496,173
2 CN.CN 9,163 95,698 2,184,326 175,071 72,795 398,088 555,357 42,385 215,896 537,197 171,787 1,569 72,363 1,072,443 70,803 1,235,006
3 CN.INT 7,898 95,106 3,572,406 306,500 171,400 746,143 1,102,507 71,353 93,919 1,738,538 384,788 13,792 132,193 3,149,406 151,129 3,776,849
4 DE.DE 9,423 123,143 1,789,670 292,747 111,132 360,194 162,496 109,874 89,489 245,575 229,326 15,064 90,964 891,945 289,542 973,819
5 DE.INT 7,940 92,831 1,984,507 257,131 105,002 472,688 272,833 63,000 109,957 435,669 291,015 12,855 72,906 1,566,296 122,997 1,424,820
6 FR.FR 9,345 116,426 1,726,714 287,401 114,736 427,350 185,151 64,728 68,443 245,379 251,974 9,846 67,085 948,217 132,306 907,988
7 FR.INT 7,937 93,913 2,023,274 279,026 116,024 481,233 275,707 68,891 111,358 401,145 301,771 12,746 76,424 1,546,377 142,244 1,410,360
8 IS.IS 9,177 111,529 3,521,347 264,026 146,972 1,049,727 875,432 186,252 80,439 1,144,677 518,415 38,262 194,891 2,377,522 111,810 2,596,534
9 IS.INT 7,935 93,795 3,300,797 291,299 156,956 638,305 988,116 58,199 119,535 1,376,454 357,826 4,851 107,768 2,769,964 145,127 3,240,390
10 IN.IN 9,267 98,727 2,596,974 270,506 120,949 698,332 739,039 61,046 47,447 1,530,389 285,447 6,710 145,545 2,081,332 89,549 2,736,181
11 IN.INT 7,902 94,900 3,344,793 287,209 167,151 696,363 1,000,235 66,203 116,165 1,275,258 330,597 13,456 110,469 2,726,502 132,277 3,000,770
12 JP.JP 9,161 112,257 4,694,217 805,957 198,707 1,067,546 1,448,750 81,813 174,850 1,708,237 500,945 7,273 197,656 4,509,725 84,790 3,696,261
13 JP.INT 7,916 93,192 2,993,598 237,785 146,113 632,548 774,804 65,844 106,032 1,233,537 320,424 14,103 103,877 2,325,961 142,060 2,862,989
14 NO.NO 9,173 120,479 1,849,223 318,695 122,411 497,193 198,548 72,546 62,132 280,798 268,844 20,328 91,965 1,086,358 192,213 936,292
15 NO.INT 7,813 90,906 1,936,953 268,004 108,990 466,995 264,463 65,319 88,882 383,436 288,211 11,922 70,556 1,471,478 121,786 1,390,004
16 US.US 9,273 109,581 7,698,833 722,356 403,457 1,434,344 2,843,014 146,464 96,109 3,003,330 594,850 15,131 170,892 4,941,606 250,583 6,644,538
17 US.INT 7,949 95,063 4,013,520 255,585 173,067 689,329 1,390,924 74,998 124,101 2,144,501 422,233 14,452 120,503 3,538,402 139,087 4,640,747

Table 2: Results from the measurement run from the different vantage points. The first part of the ID represents the country

from which we visited the sites, and the second part is the country used to list(s) of the visited pages (e.g., US.INT indicates that

we visited the top international pages from a server located in the US).

unique rules, blocks 41% of the requests that the US lists would
block. The French list, which contains 20,393 rules, would block
7% of such requests. On average, a localized list blocks 12.33% of
the requests that the EasyList would block (avg: 12.33, min: 0.02,
max: 44.53, SD: 18.94). These results imply that the lists protect users
to different extents based on their locations and the sites they visit.
Cookies.On average, we recorded 58,945 (min: 43,910, max: 105,040,
SD: 13,902) distinct cookies per measurement run. In total, we iden-
tified 20,526,074 distinct cookies (22% of all cookies) . We identified
them by name, path, and domain. Furthermore, we found a statisti-
cally significant effect (𝑝-value< 0.0001) of themeasurement profile
on the number of set cookies with a moderate effect size (i.e., in each
profile a different number of cookies is set). Using Cookiepedia [11],
we could classify the purpose of 41%. This seemingly low share is
comparable to other studies that used Cookiepedia [14, 53]. The API
classified 3,035,132 (15%) of the cookies for “Targeting/Advertising”.
Most cookies classified as “Targeting/Advertising” appear in the US-
based profiles. Overall, most cookies are used for technical and not
for tracking purposes. On each page (by eTLD+1) and on average,
all lists combined would have blocked 759 (min: 1; max: 2,510,324;
SD: 23,531) requests that would have resulted in a response that
sets a cookie. On one visited site, we observed one request where
the response would set a cookie. On the upper bound, one site sent
2,500,00 requests which would result in a cookie being set.

To get a first indication of how different block lists might affect
the number of cookies set by a page, we cross-compare the cookies
set in each measurement. We use the Jaccard index to compute the
cookies’ similarity in the different profiles. The average similarity
between the profiles is 0.16 (min: 0.05, max: 0.42, SD: 0.11), meaning
that the sets of cookies between all profiles are rather different.
Consequently, filter lists that block a different set of requests might
impact the cookies set. The highest similarity is between the Ger-
man and French profiles. Furthermore, all lists would have blocked
74,178,594 requests that would have set 31,729,456 cookies.

Lessons learned. The high-level analysis of the impact of the
localized lists and the measurement shows that different track-
ers are present in the different measurement runs and that the
analyzed lists block a different proportion of them. These find-
ings indicate that based on the privacy threat model described
in Section 3, users must select the lists they use carefully.

4.3 Understanding the Impact of Localized Lists

We now discuss the impact of localized filter lists and analyze the
effects of different lists based on locations and categories.

4.3.1 Effects of Different Filter Lists First, we test the effect of local
filter lists on identifying tracking requests. Figure 5 shows the av-
erage fraction of identified tracking requests by local filter lists for
different profiles at the page level. At a high level, we can see that
filter lists show varying performances in identifying such requests.
Overall, the baseline profile (US) identifies, on average, 13% of all re-
quests as tracking requests per page. The local filter lists for China,
India, Israel, and the United Arab Emirates show a low detection
rate, averaging under 1.3% tracking requests, corresponding to less
than 10% of the tracking requests identified by the baseline profile.
The French and German filter lists show moderate identification
rates of 2.6% and 5.1% tracking requests, respectively. Most notable
is the performance of the Japanese filter list, with an average iden-
tification rate of 14.3% tracking requests per page. The number of
rules in the Japanese list corresponds to 8% of the rules in the US list,
but the list outperforms the baseline in the Japanese measurements,
showing an optimized local effect (see Table 1).

In the following, we test the statistical differences of the local
filter lists on the page level and how their performances vary.We ran
our test with Repeated Measures ANOVA, which allowed us to test
statistically significant differences in multiple dependent samples
(tracking requests) across independent variables (local filter lists).
The assumptions for this test, such as homogeneity, were evaluated
and satisfied. However, due to a violation of sphericity, we applied
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Figure 5: Fraction of HTTP traffic identified as tracking re-

quests bymeasurement profile and filter list at the page level.

the Greenhouse-Geisser correction to adjust the results accordingly.
We found a statistically significant different effect (𝑝-value < 0.001)
on the number of identified tracking requests across different filter
lists. The results indicate significant variability in the effectiveness
of rules in the local filter lists, with some regions, such as China,
India, Israel, and the United Arab Emirates, performing worse than
the other filter lists. In Section 4.7, we discuss the efficiency of each
rule for identifying tracking requests.

Next, we test the impact of combining local filter lists with the
baseline filter list. More precisely, we evaluate how using local filter
lists alongside the baseline affects the identification of tracking
requests at the page level, using percentage change and Cohen’s d
effect size as metrics. We chose Cohen’s d to compare the means
and quantify the effect size between conditions. In this analysis,
we add the number of tracking requests per page identified by the
baseline to those identified by the local filter lists to determine the
total identifiable tracking requests. The results, demonstrated in
Figure 6, show that the effects of local filter lists vary significantly.
Most notably, the Japan filter list had the most substantial impact,
increasing the number of identified tracking requests by 168% with
an effect size of 2.0. Germany and France followed, with increases
of 47% and 19%, respectively, and effect sizes of 1.92 and 1.81. In
contrast, filter lists such as Israel and AE had minimal impacts, with
percentage changes of less than 3% and small effect sizes. These find-
ings highlight the varying efficacy of local filter lists in enhancing
tracking request identification, with some lists showing substantial
improvements and others having negligible effects. The significant
variability in the impact of local filter lists suggests that regions
like Japan, Germany, and France have more optimized and effective
rules that complement the baseline list well. When used alongside
the baseline list, these rules substantially increase identified track-
ing requests. The minimal impact observed in regions like Israel
and AE may be due to their rules’ lower specificity or outdated
nature, indicating a need for further refinement and updates.

Figure 6: Change in the number of identified tracking re-

quests and effect size per filter list compared to the baseline.

4.3.2 Differences in User Locations We now analyze the effect of
localized filter lists on users’ privacy depending on the user’s lo-
cation. Along the defined privacy challenges (see Section 3.1), we
study how effective the different lists block requests on top pages
users of a location commonly visit as well as other pages. We begin
the analysis by assessing the effect when users visit the top pages
of the user’s location (Scenario 1 in Section 3.1). Only 3 (38%) lists
worked best in the region they were designed for in terms of the
number of blocked requests. Thus, while the localized lists increase
the protection of users’ privacy, they do not show a specialization
for websites or trackers that are common in the region for which
the list was designed. The baseline and Japanese filter lists block
most requests. We found a statistical effect for the used filter lists
on the number of blocked trackers (𝑝-value < 0.0001). On average,
the country-specific filter lists in scenario 1 block 1,368,280 (12.99%;
min: 38,262, max: 6,644,538, SD: 2,446,242) requests. This is partly
due to rules that do not block a specific domain but block URLs
based on a specific pattern (e.g., /graphics/ads/*).

However, we see a different picture if we look at the requests
that are only blocked by the list for the specific region. For example,
the German (DE) list shows a low coverage of non-German trackers.
On average, the list exclusively blocks only 478 (min: 65, max: 1123,
SD: 371) requests in each of the other profiles. In contrast, all
other lists would exclusively block 153,961 (min: 48, max: 1,607,728,
SD: 310,658) requests, on average. Thus, the German list seems to
include rather general rules that apply to various domains, trackers,
and regions (see Table 2) that are also covered by other lists. On the
other hand, the non-German lists seem to have more specific rules
that are not covered by other lists, but these rules are not specific
to one region. Appendix B provides an overview of the number of
rules blocked by the different lists for our Scenario 1.

In the following, we analyze the effects when users visit the
top pages of regions the user is not located in (Scenario 2 in Sec-
tion 3.1). In our measurement, we found that only one (14%) of all
lists worked better when visiting the ‘international’ pages rather
than visiting the ‘local’ pages. On average, the lists blocked 178%
(min: 0.9%, max: 3,655%, SD: 444%) more requests than for the local
setting. Percentages over 100% indicate that the list worked better
in the local setting. These observations show that while the used
lists are optimized for the users’ country, they still offer additional
protection for other locations. Finally, we look at the effectiveness
of these lists when a user browses on websites they commonly visit
which currently are in a different geographical location (Scenario
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Figure 7: Number of requests exclusively blocked by the ana-

lyzed filter lists in the different scenarios.

3). In our measurement, five (56%) of all analyzed lists blocked most
requests in this scenario. Similar to the findings in Section 4.3.1,
this observation is unexpected, as the used lists, except the baseline,
were not designed for this purpose. Overall, for this scenario, we
found 38,544,174 requests that were only blocked by one list not
designed for this purpose (i.e., the list was neither designed for the
location of the user nor the location of the visited page). Figure 7
provides an overview of the number of requests each list exclusively
blocked in the different scenarios. Exclusively means that a request
is not blocked by any other list. In all scenarios, the baseline list
(i.e., US) and Japanese list (i.e., JP) outperform all other lists. This
observation is expected for the baseline due to its size and common
usage in many locations. Regarding the Japanese list, the results
show that while the list only holds 5,633 rules (Table 2), it still
outperforms many other lists, indicating that a careful selection of
rules can vastly increase the quality of a list. The combination of
the regional filter list and one other filter list blocked on average
1,862,990 (22.96%) (min: 63,050, max: 11,586,144, SD: 2,296,942) more
requests than just the region-specific filter list.

4.3.3 Effects of Categories Previous work has shown that some
site categories (e.g., News pages) contain more trackers [51, 53]
than other site categories. Thus, in this section, we analyze if the
lists (or some of them) perform better or worse on specific sites
and pages. We utilize the Google Topics API [30] to classify the
category of the different sites. We could classify 48,106 (42%) of the
analyzed sites into 24 different categories. The remaining sites (58%)
could not be classified by the API (i.e., the category is “Unknown”).
This is the case for sites that serve adult content (e.g., gambling
websites) and sites the API cannot classify. 17,634,612 (8.5%) sites
were classified as “News” and 6.7% sites as “Arts & Entertainment”.
The lists blockedmost requests in the category “Internet & Telecom”
(5.5%). The category of awebsite has a statistically significant impact
on blocked requests (𝑝-value < 0.0001).

Figure 8 provides an overview of the requests blocked by the filter
lists in the different categories. For the categories that hold the most
pages in our experiment (“News” and “Arts & Entertainment”), the
Japanese list identified most tracking requests (51% and 56% of all
identified requests). The lists blocked most requests in the category
“Internet & Telecom”. The baseline list performed best within this
category by blocking 38% of all identified tracking requests. We
assume that sites in this category (e.g., “Jobs & Education” and
“Shopping”) mostly target users from across the globe; the EasyList
is optimized for this use case. Overall, the Chinese filter list performs
best in most categories (30% of all categories), followed by the filter
lists from Japan (26%). The categories where the Chinese list is most

Figure 8: Number of blocked trackers per filter list of each

category. Some categories have fewer blocked requests than

others, and some dominate with a total number of trackers.

effective have fewer requests and sites, which explains the overall
low performance of the list (e.g., “People & Society”, which presents
0.5% of blocked requests). The baseline list performs best in only
three categories (i.e., “Internet & Telecom”, “Shopping”, and “Jobs
& Education” ). Based on the number of blocked requests, the list
from China has a low effect on user privacy but still blocks most
requests in some categories.

The results show differences to the findings of related work [51,
53], where the most blocked requests appear on the “News” sites.
It has to be noted that EasyList performed better in the news cate-
gory than all other categories (except “Internet & Telecom”), which
could explain this shift in the findings compared to previous works
that only use EasyList. Based on our privacy challenges, a user in
Scenario 3 benefits from multiple filter lists while browsing local
and international websites. The user in Scenario 2 can run into
several privacy issues while using an insufficient filter list.

Lessons learned. Based on the number of blocked requests, we
see that only some lists (i.e., Japan and Germany) blocked a rele-
vant number of requests in our measurement. Our experiments
have shown that the localized filter lists often do not meet the
expectation that they protect users from localized trackers or
perform notably better in specific regions. Overall, these obser-
vations raise the question of whether the effort that volunteers
into contributing to these lists is conducive or whether the
community should focus on optimizing the standard EasyList.

4.4 Analyzing Combined Lists

Previously, we have shown the effects of the rules present in the
localized lists. In the following, we analyze the effects of combining
a localized list with the baseline list. Therefore, we are adding
the same rules (i.e., the ones on EasyList) to all regional lists and
comparing the effects of the resulting lists.

4.4.1 Combining Local Filter Lists and the Baseline This section
assesses the effects of combining the baseline filter list (i.e., EasyList)
with a local filter list. For that purpose, we analyzed the number of
blocked requests using (1) the local filter list, (2) one local filter list
and the baseline, and (3) only the baseline in the country-specific
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Figure 9: Combination of filter lists and the baseline list. The

chart shows the difference between the standalone local filter

lists and the combination of baseline and local filter lists.

profiles (i.e., US.US, CN.CN). Figure 9 provides an overview of the
blocked requests by these lists (blue bars) in contrast to the requests
only blocked by the regional list (orange bars), and the baseline
list (gray bars). On average, 88.46% (min: 75.43%, max: 98.55%) of
the requests that are blocked using the combined list would not
be blocked by the local filter list. Thus, our approach of removing
the rules of the baseline list from each regional list is reasonable.
For locations like the United Arab Emirates and France, where the
baseline list is not part of the regional list, the combination increases
the number of blocked requests by 97.58% (AE) and 75.54% (FR).
The visual inspection of Figure 9 shows that in some locations, the
ratio between the blocked requests of the local lists and the baseline
list is smaller (e.g., DE, FR, NO, or CN) than in other regions (e.g., JP,
AE or IL). This observation propagates to the combination of lists
where the combination often blocks lists and blocks fewer requests.
Thus, it seems that some regional-specific lists are more suited
to the designated regions than others, but at the same time, the
baseline list seems less effective in these regions. The results show
that using a combined list will significantly increase the number
of blocked requests. Furthermore, it strengthens the usage of the
baseline filter list. Some local filter lists already contain some of the
rules from the baseline, but not all of them.

4.4.2 Effects of Combining Lists Previously, we have shown that
the lists do not work as expected in the defined scenarios because
they do not provide the best protection in the regions they were
developed for. Therefore, it is interesting to analyze the effects
when users combine multiple or all lists to maximize their pro-
tection. As already described, the lists with the most blocked re-
quests are the baseline, Japanese, and German. When combining
the localized filter and baseline lists, each profile blocked on av-
erage,3,794,718 (min: 1,128,505, max: 13,289,076, SD: 3,296,845) re-
quests. The base list increases the number of blocked requests by
5,306% (min: 81.9%, max: 66,797%, SD: 15,479%) on average. With
the combination of at least two lists (e.g., DE and Japan) on aver-
age 1,547,361 (22%) (min: 43,954, max: 11,586,144, SD: 1,676,152),
requests can be blocked. Combining three lists increases the value
to an average blocked request of 1,848,490 (+15.46%). Fig. 10 pro-
vides an overview of blocked trackers from each list in the different

Figure 10: Number of blocked trackers per filter list for each

location. For each measurement location, both profiles (local

and international) are shown.

experiments. Next, we analyze the protection level if users would
use a list that combines all analyzed lists. Based on Figure 10 and
the different privacy scenarios (see Section 3.1), we identified three
different groups of filter lists. The filter lists in the first group block
more requests in the local profile (i.e., Scenario 1) than in the in-
ternational profile. The second group of filter lists blocks notably
more requests in the international setting (i.e., Scenario 2) than in
the regional profile, and the third group blocks a similar number of
requests in both profiles. In group one, two (23%) lists (US and JP)
blocked more requests on the local profile than the international
one. It is feasible that tracking in those locations is higher than on
international websites. In the second group, we identified seven
(77%) (CN, DE, FR, NO, IN, IS, AE) lists with more blocked requests
on the international profile than in the local profile. Overall, those
lists block 1,781,388 (48.4%) more requests on average in the inter-
national profile. The biggest difference is in CN with 178% more
blocked requests than in the international profile. European coun-
tries (DE, FR, NO) are subject to the GDPR, which may impact the
number of tracking activities in those countries: the number of
international trackers is higher than that of local trackers. Users
of locations in the second group face fewer trackers while surfing
on their local sites than on the international ones. For the third
group, we define a threshold of 15% for the similarity of blocked
requests on local and international profiles. We could only iden-
tify one location (IN) that blocks a similar number (including the
threshold) on their local and international profiles. We choose 15%
as the threshold because we assume a fluctuation of rules between
5% and 15%. Accordingly, the protection of both profiles is only
similar at one location, which means that one profile dominates at
other locations. A user in scenario 3 is more likely to have problems
with their privacy. In summary, we found different behaviors in the
three privacy scenarios. For some locations (e.g., Germany) we ob-
served fewer trackers on the local profile than on the international
one. This could be because of fewer tracking activities compared
to other locations (e.g., US) or less detection through the filter lists.
Users face more tracking activities in some countries (e.g., US and
JP). Possible reasons are a greater market for targets or advertising.
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4.5 Impact of Commits and Rule Additions

Previously (Section 4.4), we have shown that the effectiveness of
the different localized filter lists varies. In the following, we analyze
if the size and activity of the community that maintains the lists
impact its effectiveness. To do so, we perform a statistical analysis
of the number of tracking requests and the activities within a filter
list repository. Therefore, we use the Spearman Correlation [57] be-
tween blocked requests and commits from a filter list. First, we want
to analyze the impact of the number of commits on the number
of blocked requests. We found no statistically significant correla-
tion between commits and blocked requests ((𝑝-value < 0.7). We
assume that a strong correlation without a statistical effect results
in multiple outliers and spread data. This may result in the dynamic
of blocking rules and tracking. Also, it is easier to assume other
suggestions with further data or factors. We found no correlation
between the number of added (𝑝-value > 0.7), modified (𝑝-value
> 0.7), or removed (𝑝-value > 0.4 ) rules. Finally, we tested the
effect of the size of a community that maintains filter lists and the
list’s effectiveness. We found no correlation on the blocked requests
size of the community (𝑝-value > 0.4. The results show that the size
of the community may not affect the number of blocked requests.
The activity in commits of the individual lists can influence the
number of trackers identified. Thus, the results indicate that the ef-
fectiveness of a filter list is not dependent on the number of changes
and potential timely reactions to new trackers. This observation
could indicate that carefully crafting a few rules is more important
than adding or modifying several.

4.6 Runtime Analysis for Filter Lists

Previously, we have shown that the effectiveness of the different
lists varies and that each list seems to block different trackers in
all analyzed regions. Therefore, combining multiple lists into one
large list might be an option to maximize user protection. We study
the effects of a filter list’s size on its runtime, required resources,
and effectiveness in blocking trackers.

We implemented the test framework using the Rust library
adblock-rust from Brave [41]. We combined all filter lists to perform
runtime analysis and took their distinct rules (143,654 rules). We
simulated our experiment with 100,000 URLs, which we randomly
selected from our corpus. We generated five different rule sets for
this analysis and tested each of them individually. For each set, we
reduced the size of the set by 20.000 rules and randomly removed
them. We used a virtual machine (VM) for this analysis that pro-
vides resources similar to a typical end-user device. The used VM
has one CPU (2,095MHz) and 16GB RAM and runs Ubuntu as the
operating system. During the runtime analysis, no other process
(aside from the standard processes of the OS) was running on the
host system. This setup is reasonable since an extension (e.g., ad
blocker) in a Web browser will never use all resources of a system
(e.g., only a single CPU might be used). To collect a reliable data set,
we tested the runtime and memory usage of each list in 300 rounds
and used the average value for further analysis. We measured a
mean runtime of 14.94s using the full set of rules, resulting in an
average of 0.000104s per rule. During that time, the host system
used a total of 9.615 GB RAM. We have to subtract about 1.5 GB
of memory usage for other processes (1.2 GB) and the storage of

the URLs used in the memory (0.3 GB). Therefore, we identified an
average memory usage of 8.115 GB. In Appendix D we provide a
graphical overview of the runtime analysis.

In our experiment, adding further rules increased the total num-
ber of blocked URLs, but the ratio between blocked URLs and the
rules used decreased. Accordingly, creating a master filter list would
increase the runtime and memory consumption, but the efficiency
of adding further rules decreases. The most interesting results are
in blocked URLs: our experiment showed that while more filter
lists block more URLs, the efficiency of additional rules decreases.
Larger rule sets offer diminishing returns, increasing runtime, and
resource usage without proportionate benefits in blocked URLs.

Lessons learned. Our runtime analysis has shown that more
URLs are blocked when the number of rules used increases.
However, integrating new rules increases the runtime and the
resources used linearly. For this reason, a new filter list should
not be completely integrated, but the rules used within the filter
lists should be considered, as we show in Section 4.7.

4.7 Usage of Rules

In this section, we test the effect of each rule on all filter lists to
re-visit and replicate the results presented by Snyder et al. [50],
who found that many rules in a filter list are not used in the field.
Using our method of identifying tracking requests described in Sec-
tion 4.1.3, we can determine which rules lead to the identification of
tracking requests. Our dataset has a total of 122,548 rules. Note that
for this analysis, we only test rules for identifying tracking requests
and not for hiding elements in the DOM (e.g., hiding consent ban-
ners). Only 8,163 (6.6%) distinct rules identify at least one tracking
request. Based on these high-level results, we see that most rules
(93.3%) do not identify any tracking requests and are never used,
at least in our experiment. In the supplementary material of this
paper (see Appendix A), we provide an overview of all rules that
identified at least one tracking request as a master filter list.

Figure 12 shows the number of rules used and the number of
identified tracking requests per filter list. The results indicate that
most rules are unused, including those in the baseline profile (stan-
dard EasyList). While the Japan, German, and French filter lists
have more rules that lead to identifying requests, supporting our
results in Section 4.3.1, the other local filter lists have fewer rules
that identified a tracker in our experiment. Figure 11 provides an
overview of the proportion of rules needed to block all identified
requests in our experiment. The main plot zooms into the upper
arc of the ECDF plot to highlight the increase in the proportional
share, while the subplot shows the entire ECDF plot. Only a few
rules are enough to block most of the identified tracking requests.
The results indicate that the top 100 rules cover 80% of identified
tracking requests, the top 500 rules cover 97%, and the top 1,000
rules cover 99%. Thus, a fraction of the rules currently present in all
filter lists would offer similar protection as the combination of all
rules, while also considerably decreasing the runtime. Further, we
analyzed how many different eTLDs+1 a single rule blocks. There-
fore, we count each eTLD+1 as a rule block in the measurement
profile. We provide an overview of how many different eTLD+1s
a single rule blocks Figure 13 in Appendix C. Most rules block a
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Figure 11: Each rule’s share in blocking requests.

single or very few domains; however, outliers exist. On average,
a rule blocks 12 (min: 0 , max: 17,275 , SD: 260) eTLD+1. The rule
with the most blocked eTLD+1s (17,275) is in the Chinese filter
list. The rule (.gif|$domain=7mshipin.org|viidii.info) is de-
signed to block an image (gif) loaded by two domains (7mshipin.org
and viidii.info). The problem with the rule is that it did not only
block requests from the two named domains but all domains (e.g.,
https://www.samsung.com/ajax-loader.gif) that load a gif. Thus,
it seems to be a mistake in the committed rule. Another exam-
ple of a malformed rule that blocks too many eTLDs is the rule
’/banner/*$domain=arthparkash.com|firlive.com|jogsanjog-
times.com|kanvkanv.com|keralafinance.com|khabor.com|lak-
sam.com|nbs24.org|tamil.com|thereport24.com’ from the In-
dian filter list. This rule blocked 3,113 distinct eTLDs, all URLs that
contained the phrase /banner/. These rules are candidates for a
rule that could break different sites by being too coarse-grained,
while it does not look like it at first sight.

In the following, we study the usage of each rule in our dataset.
The results show that the percentage of used rules per local filter
list varies significantly. Overall, 6% of the baseline rules identified
at least one tracking request. The highest utilizations are seen
for the Japanese (13.6%), French (6.6%), and German (4.8%) lists,
indicating more targeted and efficient rule applications in these
filter lists. Conversely, the lowest utilizations are observed for the
Indian (0.7%), Israeli (2.4%), and Chinese (2.8%) lists, suggesting
more underutilization or inefficiency in their filter rules. These
results highlight overall the high inefficiency of the rules in the
local filter lists. Based on these findings, we built a “master list”
from those 8,163 rules and compared it to others. In contrast to the
baseline list, the master list identifies 9,650,332 (83%) more trackers.
One important aspect of the master filter list is that each privacy
scenario would profit from this list. All local tracking requests can
be identified in scenario one, just like in scenario two, which is
all international tracking requests. Also, as shown in the previous
section, the resource costs of using filter rules decrease enormously.

4.8 Potential Site Breakage

Understanding whether a blocking rule might break a website or
other websites it was not directly built for is a non-trivial task [23].
Providing an in-depth overview of potential site breaks is not the
goal of this study and was done before [47]. However, we want

Figure 12: Overview of how often a rule was used in each list.

The more right on the x-axis a bar is, the less often the rules

are used. Higher bars represent a large number of rules.

to provide some high-level figures on whether some of the nine
analyzed lists might lead to more site breakage than others. There-
fore, we perform a two-fold analysis: (1) We analyze if the rules
lead to the blocking of first-party requests, and (2) we test if a
rule that was designed for blocking a specific domain blocked
a wrong domain. Blocking of first-party requests might not al-
ways lead to site break as first-party more and more also act as
tracker [13]. The results show that across the entire measurement,
only 72 (0.000037%) first-party requests were blocked by all lists.
These requests were distributed across 43 (0.43%) visited sites. Next,
we analyzed whether a rule that was designed for a specific do-
main might have blocked a wrong request. For instance, if a rule
was designed to block the tracking URL tracker.biz but blocked a
request to school.edu?q=tracker.biz. We could identify 31 (0.31%) of
the domains that might block a wrong request. From the 43 blocked
first-party URLs, all eTLD+1 are included in one filter list.

Lessons learned. Our analysis shows that a significant pro-
portion of the rules in the local filter lists were not used in
our measurement (only 6% of the baseline rules) and that a
rather small list would provide similar protection rates. These
findings highlight that in the future, maintainers of the filter
lists should evaluate which rules in a list are no longer needed.
These efforts also improve the performance and usability of the
lists regarding their memory usage and runtime.

5 Limitations & Ethics

A data set with 100,000 URLs was used for the runtime analysis.
Since we used an analysis device for the runtime analysis, the real
usage of the working memory and CPU resource might differ on
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a user’s device. Accordingly, our conclusions and recommenda-
tions for legitimate use have limitations. One major limitation of
our approach is that we can only measure which requests a filter
list would have blocked. However, we cannot measure whether
this blocking would have resulted in page breakage, a common
problem with filter list-based blocking approaches also observed
by other works [49]. Another limitation is that a site can detect
that we use Amazon Web Services (AWS) for visiting their pages
and may deliver no content due to this configuration [32]. Further,
our crawler creates traffic on the visited site. Also, we might see
ads that incur provider costs from the site. Since our crawler visits
each page only once, we assume these issues are minor and can be
accepted. Furthermore, we identify tracking requests after running
the measurement and not during the measurement, which could
vary in the number of blocked requests. This approach is essential
to maintain a consistent dataset for comparability across filter lists
and to prevent the risk of page breakage and disruptions.

6 Related Work

The general idea of using a filter list is widely prevalent in computer
science, especially with Web technologies. Approaches to blocking
unwanted behavior can be found in other areas as well [17, 46, 52].
Filter List Generation. Feal et al. [27] analyzed the transparency
and behavior of open-source blocklists. They looked at the overlap
between specific providers in the open-source blocklists and found
differences between open-source and commercial blocklist ecosys-
tems. To reach this conclusion, they compared their results with the
work of Li et al. [42]. Sjosten et al. addressed the problem of poorly
maintained filter lists in underserved regions [48]. The authors pro-
pose a two-step filter list generation pipeline that combines deep
browser instrumentation and an ad classifier. The pipeline is ap-
plied to three regions with poorly maintained filter lists (Sri Lanka,
Hungary, and Albania) and generates new ones that complement
existing ones. Smith et al. identified the problem that the continu-
ous development of filter lists poses a problem for the authors, as
the degree between “blocked” and “broken” is very small. For this
reason, Smith et al. have developed a tool in their work [49] that
automatically determines whether a rule is suitable for a filter list
or is likely to break different websites. Synder et al. [50] analyzed
the growth and health of filter lists. They find that 90.16% of the re-
source blocking rules on EasyList provide no benefit to users in the
common browsing scenarios. They also find that checking a URL
synchronously with a reduced list while asynchronously check-
ing with a complementary list improves performance significantly
while maintaining the coverage of the complete EasyList.
Filter List-basedAdBlocking.One study by Iqbal et al. introduces
ADGRAPH, a graph-based approach to ad and tracker blocking [35].
The authors highlight that filter list maintainers can analyze dis-
agreements between ADGRAPH and filter lists to identify and
fix potential inaccuracies in filter lists. Additionally, ADGRAPH
can support the generation of filter lists targeting under-served
languages or regions on the Web. Another study by Iqbal et al. in-
troduces a retrospective measurement and analysis of anti-Adblock
filter lists [34]. The authors target the problem where online pub-
lishers deploy anti-adblock scripts to detect adblockers from the
users. Fouad et al. analyzed EasyList and EasyPrivacy, as well as the

Disconnect Filter lists to find gaps in tracking mechanisms and the
detection of these mechanisms [7]. Merzdovnik et al. [43] studied
the effectiveness of popular tracking blocking extensions. They
evaluated how many third-party requests each extension blocked.

7 Discussion and Recommendations

Our results show that localized trackers exist that are not identified
by the general EasyList (i.e., our baseline). Analyzing the regional fil-
ter list ecosystem, we found that the only usage scenario for which
three of the nine regional filter lists seem to work as intended is
when a local user browses a local website (scenario 1). For trav-
eling users who visit their regular local websites (scenario 2) and
for temporarily traveling users who visit region-specific websites
(scenario 3), we identified a significant drop in the effectiveness of
the regional filter lists when they were used without the baseline
list. Our results show that the approach to combining the baseline
list and localized list enhances user privacy for scenarios 1 as well
as for scenarios 2 and 3. Thus, we need to find ways to improve the
regional lists further to boost their effectiveness and enhance the
privacy protection they offer.

One way to do that could be to find more volunteers to work
on these lists. Yet, our results show that the community size, the
number of commits, and the number of rules added or modified
by each commit do not impact the number of requests they block.
Thus, the quality of the list is not directly determined by the size
of the community maintaining it but by the rules created by the
community. Thus, the localized (but also the standard) list maintain-
ers and volunteers must consider these rules when creating them.
However, creating these rules is not straightforward and requires
some experience. Consequences (e.g., page breakage) may not al-
ways be foreseeable. Therefore, the research community should
look for ways to support these communities and research ways that
enable the volunteers to build effective rules more easily (e.g., [18]).
We encourage future research to better understand why specific
filter lists perform better in blocking efficiency and to understand
the intricacies of the community-maintained filter lists.

Another idea could be to combine the efforts of all communities
and create one large block list that should work for all regions in all
of the defined scenarios, which would mean eliminating localized
lists and merging them into the baseline list. Putting aside the fact
that a simple merge could lead to unforeseeable incidents of site
breakage, our runtime analysis has shown that further increasing
the size of the used filter lists could lead to significant overhead in
using them in a real-world scenario, as they would add too much
latency. A mechanism that clusters and combines rules that block
the same resources would be needed to support this approach. Such
a method could also help sanitize lists from no longer needed rules.

8 Conclusion

In this paper, we analyzed the effectiveness of different localized
filter lists and compared them against each other. We used the
standard EasyList as a baseline and performed a large-scale mea-
surement incorporating nine vantage points and 18 measurement
profiles. Our experiments have shown that only two localized lists
(i.e., German and Japanese) notably improve the protection of users
and that most lists only identify very few trackers. We made this
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observation in all three defined scenarios. These results question
the usefulness and need for these localized lists and show that most
trackers are not specific to a given region. Our results reproduce,
replicate, and support the findings of Snyder et al. [50] and show
that most (93% compared to 90% in Snyder) of the rules present in
all lists did not block any URLs in our large-scale measurement.
Therefore, filter list maintainers should reconsider the mechanisms
for removing redundant rules. Such steps could increase the lists’
performance in terms of memory utilization and classification time.
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ID AE CN DE FR IS IN JP NO US

0 AE.AE 7,046 56,338 390 126,609 11,172 34,889 1,021,418 59,526 751,295
1 CN.CN 2,449 183,623 94 60,876 1,526 20,913 534,296 38,208 395,284
2 DE.DE 40,314 68,471 13,672 77,459 14,796 25,743 520,955 234,836 392,240
3 FR.FR 10,021 53,625 1,123 105,255 9,438 25,358 586,992 84,719 342,908
4 IS.IS 3,104 61,164 310 197,590 30,446 53,339 1,169,997 64,373 607,204
5 IN.IN 48 33,278 307 100,599 6,597 36,376 942,548 34,885 703,249
6 JP.JP 3,883 144,733 65 172,795 7,249 51,490 2,324,275 34,380 682,159
7 NO.NO 5,148 48,783 764 110,694 20,105 33,862 693,689 148,852 334,142
8 US.US 19,348 63,508 769 214,554 14,259 26,249 1,607,728 188,786 2,169,025

Table 3: Number of requests exclusively blocked in Scenario

1 by each analyzed list.

Figure 13: Overview of how many eTLDs were blocked by

one rule.

B Number of Requests Exclusively Blocked by

Different Filter Lists

Table 3 provides an overview of the number of requests blocked
exclusively by one list in Scenario 1 (see Section 3.1). Exclusively
means that no other list would have blocked the request of interest.

C Blocked eTLDs by Rule

In Fig. 13, we provide an overview of the number of blocked eTLDs
by a distinct rule for each filter list. The more right on the x-axis a
bar is the more eTLDs a specific rule blocks. Rules that block many
eTLDs are candidates for malformed rules, as it is likely that they
block too many requests. Most rules block only one eTLD.

D Runtime analysis

Figure 14 provides an overview of the performance measured from
the generated lists. The figure shows that the number of rules used
directly impacts runtime and memory consumption. It can be seen
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Figure 14: Runtime and memory analyses of different num-

bers of used rules

that both thememory consumption and the runtime increase almost
linearly with the number of rules used. However, the efficiency of
the individual rules used decreases linearly. This means that adding
more rules above a certain database size does not have a major effect
on the number of blocked URLs. Still, the negative effects (longer
runtime and higher memory consumption) continue to increase
linearly.

E Commitments to the Filter Lists

Figure 15 shows the number of added and removed rules for 23
open-source filter lists over a 12-month period. The results highlight
significant differences in update frequency between repositories.
While some repositories, such as Bulgarian, exhibit minimal activ-
ity (e.g., 5 out of 12 months with fewer than 100 entries), others,
like USA, consistently show over 5,000 entries per month. Addi-
tionally, filter lists that block more tracking requests demonstrate
sustained activity levels (see Section 3.2). For nearly all repositories
and months, the number of added rules exceeds the removed rules,
suggesting a continuous growth in the size of these filter lists.
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Figure 15: Number of added and removed rules for 23 regional filter lists.
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